If it's not what You are looking for type in the equation solver your own equation and let us solve it.
210=2x^2+x
We move all terms to the left:
210-(2x^2+x)=0
We get rid of parentheses
-2x^2-x+210=0
We add all the numbers together, and all the variables
-2x^2-1x+210=0
a = -2; b = -1; c = +210;
Δ = b2-4ac
Δ = -12-4·(-2)·210
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-41}{2*-2}=\frac{-40}{-4} =+10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+41}{2*-2}=\frac{42}{-4} =-10+1/2 $
| f/3− 4=–2 | | 14=x3−13 | | 5-3/5x=4 | | d/3+ 10=12 | | 5x=1.85 | | 11w+-17w=-18 | | 8=4/3u | | 15+x2=50 | | 4x+8=2x+22 | | Y=-4x2+6 | | 5-3/4x=4 | | 11w+-17=-18 | | 50/100=x/10 | | 127=2x+4 | | c/2− 1=1 | | t/3+ 5=7 | | x+7=-90/x | | 2=g/3+6 | | 1=u2− 1 | | 5x+8/2=39 | | 9x-55=8 | | (X)=4x+4 | | 10+2w=w | | 1=u/2− 1 | | y=0.03+0.25 | | 8z-27=-z | | 4n-2=5 | | -4x6=3x-8 | | z/3− 1=1 | | 5=15v | | 20-3w=w | | n/0.5=29 |